
1. Challenge:
Volkswagen CAN Checksum

Task:
The goal of this challenge is to compute the correct one byte
checksum XX for the CAN message with payload XX0f0300. The flag is
of the format CTF{XX}.

Some background info and a sample python app is given for the
Autosar 8bit checksum with the polynomial 0x2F

The examples:
● 74000300
● c1010300
● 31020300
● 84030300
● fe040300

It is stated that the checksum uses a fixed “secret” byte which is
added to the data and the checksum then goes over those 4 bytes. So
for the first example it is 00 03 00 xx as input with xx as the
secret byte for the Autosar crc and the result should be 74.

import crcmod
crc = crcmod.mkCrcFun(
 poly=0x100 + 0x2F, #autosar crc poly
 initCrc=0xFF, #autosar crc init
 rev=False,
)

for secret in range(256):
 data = b'\x00\x03\x00' + secret.to_bytes(1, byteorder='big')
 checksum = crc(data) ^ 0xff
 if checksum == 0x74:
 print(f"Found secret_byte: 0x{secret:02X}")
 data = b'\x0F\x03\x00' + secret.to_bytes(1, byteorder='big')
 checksum = crc(data) ^ 0xff
 print(f"CTF: {checksum:02X}")

It finds the correct secret byte 0xC3 and gives then the correct
checksum for the CTF payload → 35

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB
https://www.linkedin.com/in/dbstephan/

2. Challenge:
Hitag2 Keyfob ID (Part 1)

Task:
This challenge contains a recording from a keyfob featuring a Hitag2
cipher for RKE. The keyfob transmits a message containing a
plaintext keyfob ID, counter and button followed by a MAC/secret.
Attached to this challenge you will find a SDR recording of 6
presses of the unlock button.

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

First step is loading the file into Universal Radio hacker. We can
see already the signals. One long and one short signal, repeated
various times for the several presses of the unlock button.

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

When we zoom a bit into the signal we can see this:

Doesn’t seem to be a really good recording, but we will try to get
the most out of it.

I marked the signal here with red and green. Red is where the signal
is present and green where no signal is present. This looks pretty
much like OOK (On-Off Keying), where a high amplitude is used to
represent a binary 1 and the absence of any amplitude to represent a
0. The morse signal is a well known example of OOK.

We will convert this signal now to something usable for the two CTFs
we need to solve.

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

The Autodetect thinks the signals are 200 Samples/Symbol, but this
is not correct. When switching the Signal view to “demodulated” we
can actually have a better look and measure the correct value there.

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

We can use the autodetect (make sure to check the two “Additionally”
things), but the signal won’t be ok yet. It is detected correctly a
ASK/OOK signal. So we can start from there.

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

With the values for the Samples/Symbol now to 155 and an errorrate
of 20 we can switch now to the Analysis tab.

The signal is Manchester encoded and we have to select that in the
encoding. I use here Manchester II which is just the signal inverted
(which is correct) in comparison to Manchester I. Pretending we are
looking at a unknown signal we could search for the counter-value
and if that is counting down it would be a hint to use the other
Manchester encoding. With Manchester II this signal has an
incrementing counter and we got confirmation of using “II”.
When we now press on the line numbers we can see in “Hex:”-box the
signal as a byte-stream. When it looks like here starting with FFFF
and is 13 bytes long, then it should be a good signal. Some will
have a bad CRC as the received signal was not that great, but we can
test it with the python script. You can also already see the IDE
(CTF value) in the hexbox. It is a 4bytes value directly after the
FFFF → 0200472A

The ide is what is requested as CTF value, so this is solved.

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

The pythonscript for the two hitag tasks:

#!/usr/bin/env python3

#read the papers/pdfs. All the bits are explained in them. It is actually quite simple.

import sys
if len(sys.argv) < 2:
 print("Usage: {} ffff0200472a03a05749e7facf ".format(sys.argv[0]))
 sys.exit(1)

byte_array = bytearray.fromhex(sys.argv[1]) #from RADIO HACKER

if len(byte_array)!=13:
 raise ValueError("The provided string got bad length")
checksum=0
for i in range(2,12):
 checksum=checksum^byte_array[i]
if checksum==byte_array[12]:
 print("Checksum ok")
else:
 raise ValueError(f"Bad checksum should be {checksum:02X} but is {byte_array[12]:02X}")

ide = int.from_bytes(byte_array[2:6], byteorder='big')
print(f"ide {ide:08X}")
button=(byte_array[6]>>4)&0x3
print(f"button {button:01X}")
counter=byte_array[6]&0xF
counter=counter<<6
counter+=byte_array[7]>>2 #the two lsb are the two msb of the secret/crypt
print(f"counter {counter:03X}")
secret = int.from_bytes(byte_array[8:12], byteorder='big')
secret=secret>>2
secret+=(byte_array[7]&0x3)<<30 #the two bits after the counter are the high bits of the
secret/crypt
print(f"secret {secret:08X}")

#this is needed for the next CTF
print("\ndata for htcrack:")
print(f"UID {ide:08X}")
#IV is in this case just the counter plus 4bits with the button value
iv=(counter<<4)+button
print(f"nRx {iv:08X}")
print(f"aRx {secret^0xFFFFFFFF:08X}")

3. Challenge:
Hitag2 Crack Secret Key (Part 2)

Task:
This challenge contains a recording from a Keyfob featuring a Hitag2
cipher for RKE. The keyfob transmits a message containing a
plaintext keyfob ID, counter and button followed by a MAC. Attached
to this challenge you will find a SDR recording of 6 presses of the
unlock button.
Use URH to decode the messages from the keyfob and figure out the
keyfob ID, button and keystream. Use this to crack the (equivalent)
key that's inside the keyfob.

The loading of the file and the analysing is same as on the task
before. You should download the proxmark code and compile the
ht2crack tool as this is needed in this task. Works also fine under
Windows using MSYS.

So first we need to get the data from two signals (one seems to be
actually a lock signal, as we got a different button value). The nRx
value is just the countervalue shifted by 4 to the left plus the
button value. aRx is secret value inverted (xor FFFFFFFF).

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

And these are then used for the ht2crack programm.

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

After some time the key is found and that is also our CTF value.

4. Challenge:
AVTP Video

Task:
Attached to this challenge you will find a pcap captured from a G30
BMW. This capture was taken using a TAP on the automotive ethernet
connection between the BDC (e.g. the gateway/BCM) and the rear view
camera.

In this pcap you will first see SOME/IP traffic. When the car is put
in reverse a video stream is started alongside the SOME/IP traffic.
The goal of the challenge is to decode this video stream. The rear
view camera is pointed at a piece of paper containing the flag.

As you can see on the timeline of the CTF this one was my nemesis.
First step is to load pcap into wireshark and take a look:

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

At time 11.306222 in the log the
network traffic with “JPEG” as
marked protocol starts. I
updated my wireshark, so maybe
in previous versions it will
have another ID and not “JPEG”,
but the start time will be same.
You can take that first message,
select the destination and apply
as filter and the log will be
cleaned from all other traffic.

Lets check the first packet:
0000 03 01 a9 ee 10 75 44 0c ee 36 5e 46 81 00 a0 56
0010 22 f0 03 80 01 01 44 0c ee 36 5e 46 10 75 00 00
0020 00 00 02 00 00 01 00 20 00 00 67 42 00 29 e3 50
0030 16 87 a4 20 00 00 7d 00 00 18 6a 0d 18 00 0c e0
0040 00 04 86 bd e0 00 40 00 00 00 00 00 00 00 00 00
0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0060 00 00 00 00 00 00

22 f0 is the AVTP ID and wireshark states the 03 after is a flag
for compressed video. This frame seems pretty short for compressed
video, so it might be just some setup.

Next packet:
0000 03 01 a9 ee 10 75 44 0c ee 36 5e 46 81 00 a0 56
0010 22 f0 03 80 02 01 44 0c ee 36 5e 46 10 75 00 00
0020 00 00 02 00 00 01 00 04 00 00 68 ce 3c 80 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00

Even shorter than the first, so pretty clueless up to now.

Next packet (only the first 0x40 bytes as it’s big):
0000 03 01 a9 ee 10 75 44 0c ee 36 5e 46 81 00 a0 56
0010 22 f0 03 80 03 01 44 0c ee 36 5e 46 10 75 00 00
0020 00 00 02 00 00 01 05 59 00 00 7c 85 88 84 00 00
0030 6b 7b e9 8f f2 c1 90 00 10 12 f4 45 23 c8 a5 d8
0040 df 27 4e 07 ed 29 f1 c0 0c 76 23 77 9f 15 de 7c

There are very little changes in the first 0x28 bytes of the
packets. The two bytes at 0x26/0x27 seem to be related to the size,
and when we verify this on the big package it looks like the
“payload” starts from 0x2A (from the 7C). This assumption can also
be verified with all following “big” packets. The two small ones
seem to be padded with 00s, so they jump out a bit. The 0x67 and
0x68 from the first two packets must be some setup and then the
video follows with the 7C blocks.

A bit of searching the internet then revealed that 0x67 and 0x68 are
actually NAL (Network Abstraction Layer) unit headers for H.264/AVC
video. Nice. We know the video format. A bit more digging then
explained the usage of 00 00 00 01 (Annex-B format) to preceed those
NALs to have a video which you can use then with ffmpeg to convert
to a MP4. Python with scapy is your friend here to extract all those
packages. I used the found length identifier to extract every
payload with the leading NAL byte from every networkpacket, put the
00 00 00 01 bytes in front of each and saved this then stitched
together. Only to see ffmpeg then hitting me with errors and the
file was not recognized as video… So this was a fail.

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

Something is missing. Lets take a look at the structure again. So
first is the 0x67 packet, then the 0x68 and then a lot of 7C packets
before it starts again with 0x67.

First packet after the 0x68 packet
0000 03 01 a9 ee 10 75 44 0c ee 36 5e 46 81 00 a0 56
0010 22 f0 03 80 03 01 44 0c ee 36 5e 46 10 75 00 00
0020 00 00 02 00 00 01 05 59 00 00 7c 85 88 84 00 00

loads of these ones
0000 03 01 a9 ee 10 75 44 0c ee 36 5e 46 81 00 a0 56
0010 22 f0 03 80 04 01 44 0c ee 36 5e 46 10 75 00 00
0020 00 00 02 00 00 01 05 a2 00 00 7c 05 d2 bf 1d 14

last packet before the next 0x67 packet is sent
0000 03 01 a9 ee 10 75 44 0c ee 36 5e 46 81 00 a0 56
0010 22 f0 03 80 5d 01 44 0c ee 36 5e 46 10 75 00 00
0020 00 00 02 00 00 01 01 5e 04 00 7c 45 22 a1 8b 2c

So when looking at the 7C packets we can see that the first got the
byte after the 7C as 0x85, then all next packets got 0x05 and the
last packet 0x45.
Further internet search then revealed that 7C 85 is the start of a
FU-A (fragmentation unit) for a H264 IDR slice which got normally
NAL 0x65. The two most significant bits of the second byte tell what
fragment it is. 10xxxxxx or 0x8X means it is the start/first
fragment. 01xxxxxx or 0x4X means it is the end/last fragment. When
none of the bits is set → 00xxxxxx or 0x0X it means it is a middle
fragment.
When we look at the other packets in the network stream we can see
5C x1 which is the FU-A (fragmentation unit) for a H264 non-IDR
slice which got normally NAL byte 0x41.

Lets adapt the python script again. The handler for the 0x67 and
0x68 packets is fine. When we find the 0x7C 0x85 we treat that as a
start of the 0x65 slice. Putting 00 00 00 01 in front, then the
payload. From the payload we remove the 0x7C 0x85 and replace with
0x65 (IDR slice). From the 7C 05 messages we only take the payload
after the 7C 05 and stitch them to the previous payload. When we
encounter the 0x7C 0x45 frame we also remove the first two leading
bytes from that payload (7C 45) and stitch that to our 0x65 slice.
Now this NAL message is complete.

With the following network packets we do the same. The only
difference is that the marker is 5C x1 for a non-IDR slice (NAL byte
0x41), but process is identical.

The resulting file is saved and we can let ffmpeg do its job.

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

ffmpeg -i output.ts myvideo.mp4

-> Stream #0:0: Video: h264 (Baseline),
yuv420p(progressive),720x480, 25 fps, 50 tbr, 1200k tbn

That looks nice.

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

CTF found.

Final words… A big “Thank you” to Willem for providing these
interesting riddles.

Stay curious!

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

Practical Car Hacking CTF Teaser by Willem Melching

Walkthrough by Stephan DB

The pythonscript for the AVTP task:
#!/usr/bin/env python3
import sys
import subprocess
from scapy.all import rdpcap, Ether, Dot1Q

def extract_avtp_stream(pcap_file, output_ts):
 """
 CTF extractor by Stephan DB. Python 3.10+ required
 """
 print(f"Loading packets from {pcap_file}...")
 packets = rdpcap(pcap_file)
 with open(output_ts, "wb") as f:
 for pkt in packets:
 avtp_payload = None
 if Ether in pkt:
 #VLAN-tagged frame; check Dot1Q layer for AVTP type
 if pkt.haslayer(Dot1Q):
 dot1q = pkt.getlayer(Dot1Q)
 if dot1q.type == 0x22F0:
 raw_data = bytes(dot1q.payload)
 length_bytes = raw_data[0x14:0x16]
 nal_length = int.from_bytes(length_bytes, byteorder='big')
 #print(hex(nal_length))
 if len(raw_data) > 12:
 avtp_payload = raw_data[24:24+nal_length]
 if avtp_payload[0]==0x67:
 avtp_payload = b'\x00\x00\x00\x01' + avtp_payload
 if avtp_payload[0]==0x68:
 avtp_payload = b'\x00\x00\x00\x01' + avtp_payload
 match avtp_payload[0]:
 case 0x7C:
 match avtp_payload[1]:
 case 0x85:
 print("fragment IDR slice start")
 avtp_payload=avtp_payload[2:]
 avtp_payload = b'\x00\x00\x00\x01\x65'+avtp_payload
 case 0x5:
 print("fragment IDR slice followup")
 avtp_payload=avtp_payload[2:]
 case 0x45:
 print("fragment IDR slice end")
 avtp_payload=avtp_payload[2:]
 case 0x5C:
 match avtp_payload[1]:
 case 0x81:
 print("fragment non-IDR slice start")
 avtp_payload=avtp_payload[2:]
 avtp_payload = b'\x00\x00\x00\x01\x41'+avtp_payload
 case 0x1:
 print("fragment non-IDR slice followup")
 avtp_payload=avtp_payload[2:]
 case 0x41:
 print("fragment non-IDR slice end")
 avtp_payload=avtp_payload[2:]
 else:
 print("Warning: Packet too short, skipping.")
 if avtp_payload:
 f.write(avtp_payload)
 print(f"Extraction complete. Stream written to {output_ts}")

def convert_ts_to_mp4(ts_file):
 cmd = ["ffmpeg", "-i", ts_file," myvideo.mp4"]
 print(cmd)
 print("Converting to MP4 using FFmpeg...")
 subprocess.run(cmd, check=True)
 print(f"Conversion complete. Playable file saved as myvideo.mp4")

def main():
 if len(sys.argv) < 2:
 print("Usage: {} <pcap_file> ".format(sys.argv[0]))
 sys.exit(1)

 pcap_file = sys.argv[1]
 ts_output = "output.ts"

 extract_avtp_stream(pcap_file, ts_output)
 convert_ts_to_mp4(ts_output)

if __name__ == "__main__":
 main()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

